Discovery
Попробуйте другие наши приложения

Статьи

Переводы и личные заметки.

ВсеAIAutomationCUDADevOpsDevelopment ToolsDistributed ComputingDistributed InferenceDistributed TrainingDockerGPUHomelabInferenceInfrastructureKubernetesLLMMLOpsMachine LearningNCCLOpen SourceOptimizationProductivityPyTorchRayScalingTerminalTorchServeTransformersvLLM

Обзор OpenCode — терминальной утилиты для AI-ассистированной разработки с поддержкой десятков провайдеров, плагинов и уникальных возможностей.

4 января 2026 г.
AIDevelopment ToolsOpen SourceTerminalProductivity

Обзор стратегий распределенного обучения, включая алгоритмы Ring All-Reduce и Tree All-Reduce для эффективной синхронизации градиентов между GPU.

6 апреля 2025 г.
Distributed TrainingLLMGPUNCCL

Подробное объяснение механизма KV-кэширования в архитектуре Transformer, его влияния на скорость инференса и связанных с ним компромиссов по памяти.

27 января 2025 г.
TransformersLLMInferenceOptimization

Введение в Ray Compiled Graphs — новую функцию для оптимизации GPU-коммуникаций и снижения накладных расходов в распределенных AI приложениях.

14 января 2025 г.
RayGPUOptimizationDistributed Computing

Практический опыт настройки распределенного инференса LLM на нескольких серверах с использованием Ray и vLLM, включая решение проблем с разным объемом видеопамяти.

3 января 2025 г.
RayvLLMDistributed InferenceGPUHomelab

Обзор ключевых концепций MLOps, включая автоматизацию пайплайнов, версионирование, тестирование и мониторинг ML-систем для обеспечения их надежности в продакшене.

3 января 2025 г.
MLOpsDevOpsMachine LearningAutomation

Инструкция по сборке vLLM и vllm-flash-attention из исходников для обеспечения совместимости с CUDA 11.8 и PyTorch 2.5.1.

18 декабря 2024 г.
vLLMCUDADockerPyTorch

Руководство по интеграции движка vLLM в TorchServe для создания высокопроизводительного производственного решения по обслуживанию больших языковых моделей.

14 ноября 2024 г.
TorchServevLLMLLMPyTorchInference

Анализ преимуществ и недостатков использования крупных или мелких узлов в кластере Kubernetes, включая вопросы эффективности ресурсов, отказоустойчивости и масштабирования.

13 ноября 2024 г.
KubernetesInfrastructureScalingDevOps